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Generally Covariant Schrodinger Equation
in Newton—Cartan Space—Time. Part |

J. Wawrzycki'
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The covariant Sclodinger equation is obtained with the use of standard geometrical
objects of the Galilean space—time. It's symmetry and covariance are investigated. Gauge
freedom is eliminated by invariance condition. Family of the plane wave solutions in
any coordinate system is found. Connection with previous investigations is discussed.

1. INTRODUCTION

Of late there has been a great interest in frame of reference rotating with a
constant angular velocity (Baahicki-Birula et al, 1994; Bial/nicki-Birula and
Biatynicki-Birula, 1997; Bor@'et al, 1991; Kaliiski et al, 1996; Lammerzahl,
1996; Mashoon, 1988). The case of rotating motion with constant angular velocity
is exceptional in the sense that the correct 8dimgjer equation can be uniquely
obtained from the classical Lagrange function (@mtki-Birula et al,, 1994;
Biatynicki-Birula and Biaynicki-Birula, 1997; Bor@'et al,, 1991; Kaliiskiet al.,

1996; Lammerzahl, 1996; Mashoon, 1988). But this is not the case in general for
two reasons

(a) there is the problem with succession of operators;
(b) in general such operators appear that do not possesses any self-adjoint
extension.

So, a natural problem arises: to write Safiriger’'s equation in any noninertial
coordinate system. Duval andulZle (1984) and Kuchig1980) gave such an
equation. Kuchagave explicit form of the equation for special observers, and in
the case of rotating observers it has a form unitarily unequivalent to that given by
Biatynicki-Birula et al. (1994), Bialnicki-Birula and Biaynicki-Birula (1997),
Bordeé et al. (1991), Kaliiski et al. (1996), Lammerzahl (1996), and Mashoon
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(1988) (see Eqg. (6.11) and Eq. (4.17) of KuchB380). But the Egs. (6.8) and
(4.17) of his work are in agreement with these authors’ work. Equation (6.11)
written for rigid observers is incorrect. The Eq. (6.8) or (5.4) is essentially the
same as the equation given by Duval anghlé. Duval and Kihzle (1984) found

a covariance scheme of the Sgtiriger equation in a very elegant way. They built
the so-calledBargmann principal bundle V) over the space—tim® (it is built

in a standard way, i.e. exactly as the principal bur@(@v) with the Galilean
groupG, but instead of5 the central extensioB (Bargmann groupof G is used.
Then, they found the most general connection ferion it.

Buttheir scheme possesses too big a gauge freedom, and the number of objects
they use is also too big as considered in the 8dimger's equation context, that
is, those objects cannot be defined in terms of Newton—Cartan spaceiftithe
appendix, the works of Duval andifZle (1984) and Kuchig1980) are compared
in detail).

Moreover, it seems that if we want to have the wave equation in generally
covariant form a gauge freedom is needed (even in Galilean space—time). Itis really
the case if we take into account only tb@varianceproperties (notnvariance.

In the literature concerning the problem ordgvarianceis taken into account

(not only in Duval and Kinzle (1984) but also in the less known and quite recent
literature (Canarutteet al, 1995; Vitolo, 1999). On the other hand, no gauge
freedom appears in description of a free quantum particle. This problem is solved
here, i.e. itis shown in this paper that the gauge freedom can be uniquely eliminated
by invarianceproperties.

There exists another important motivation for research in generally covariant
wave equationthe most general schemas of covariance provide a very natural
way in which the wave function interacts with other fields.

According to thisidea, originated by Hermann Weyl (as to the author’s knowl-
edge), the interaction is realized by an appropriate definition of the connection.
Application of the idea to the nonrelativistic case has at least two justifications. The
firstis that the nonrelativistic quantum mechanics is quite well understood and has
mathematical support, so it is a guide to the relativistic case (see Caretratto
1995). The second justification is as follows: T@alilei invariantwave function
in the electromagnetic field is still unknown, or the interaction of the wave function
with the Galileanlimit of the Maxwell equations as firstly found by Le Bellac and
Levy-Leblond (1973). As was shown in Le Bellac areliy“Leblond (1973) there
are two different limits: electric and magnetic. The magnetic one is “more consis-
tent” with the quantum mechanics in the sense that the wave function obtained by
the minimal coupling is indeed covariant but in the electric case it is not. However,
the constitutive equations are nonlinear in the magnetic case (G. A. Goldin, private
communication). This needs an explanation.

The aforementioned problem does not contradict the agreement of the semi-
classical theory of radiation with experiments. It is physically reasonable (and of
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course physically possible) to assume that in comparison to the light velocity, atom
has small velocity when it interacts with the electromagnetic waves. After this the
Hamilton function of the atom is classical but the electromagnetic waves fulfil rel-
ativistic equations, there do not exist electromagnetic waves in the Galilean limit
of Maxwell equations (see Le Bellac ané\y-Leblond, 1973).

In this paper, we have not dealt with the more general and most natural
coupling to other fields, the reader interested in it may refer to Canastitib
(1995), where some interesting ideas from this field are presented. We deal with
the coupling to the gravitational field and in part | mainly with the covariant wave
equation in the flat Galilean space—time.

In Part | the generally covariant Sauihger equation is given. It cor-
rectly reproduces results of Bialicki-Birula et al. (1994), Biay/nicki-Birula and
Biatynicki-Birula (1997), Bor@'et al. (1991), Kaliiskiet al. (1996), Limmerzahl
(1996), and Mashoon (1988) in the case of rotating motion with constant angular
velocity. The Schodinger equation is obtained with the use of standard geometrical
space—time objects only, introduced independently byt&airt (1990). It should
be stressed that only the standard geometrical objects—and no other quantities—
are used. The explicit form of the gauge, which brings the equation to the form
invariant with respect to all space-time symmetries, is given. This establishes
the geometrical interpretation of the wave functionGalilean space—time. The
phase ftransforming the wave functio@ is uniquely determined bynvari-
ance conditionsee section 5). Also, the generally covariant formulation of the
classical mechanics is given and connection of the generally covariant Hamilton—
Jacobi to the generally covariant wave equation. This gives possibility of finding
the form of the plane wave in any coordinate system. All this would be very
difficult to obtain with the use of the method applied in Canarettal. (1995)

(see the comments under the number IV of the introduction in Canasutb,
1995).

In Part Il the generally covariant wave equation in the Newton—Cartan space—
time is investigated.

Because the notions mfvarianceandcovarianceare important in our investi-
gations, we give strict and general definitions of them. Let us consider a space—time
M and the groups (or pseudogroup) of transformations BF (in our case the
group of diffeomorfisms).

Definition. There is given a geometrical objegty) in M with m components.

If for each pointx there exists a neighborhood such thretumbersy correspond
uniquely to each point of the neighborhood; the correspondence is such that the
componenty’ at each poink in a new coordinate systeai depends only on the
componenty in the old systemu and the transformationof G,t : u — U/, i.e.

y = F(y,t), t:u—u.
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See Schouten (1951) and Nijenhuis (1952) for the literature concerning definition
and investigation of the geometric objects.

Let us consider a physical system that by assumption is completely described
by an objecty (in the case of a free particleis the space—time curve—possibly its
history). The set of all possible values p{not necessarily realisable physically
by the system) will be called to be the set of “kinematically possible trajectories”
(kpt) (in the case of a freely falling particle the set of kpt consists of all space—
time curves, however, not necessarily geodesic curves). if ttee be physically
realized, then it will be called “dynamically possible trajectory” (dpt) (in the case
of a free falling particle the set of (dpt) consists of all geodesics).

Definition. A group G will be called covariance group of a theory if

1. The set of all kpt constitutes a geometric object under the acti@ of
2. The action in 1 is such that it associates dpt with dpt.

If a theory possesses a covariance gr@yphen one can divide the set of dpt
into equivalence classes of a given dpt. Two dpt are defined to be members of the
same class if they are associated by an eleme@t &quivalence class represents
the same physical state of a system, but in a different reference frame. In general
it is possible to divideys in two parts—dynamicalD and absolute/A—in such
a way that:

Definition.

1. The partyD is that which distinguishes between various equivalence
classes.

2. yD constitute a geometrical object under the actioGof

3. YA constitute a geometrical object under the actioGof

4. Any yA that satisfies the equations of motion of the theory appears, to-
gether with all its transforms und@, in every equivalence class of dpt.

Exceptionally, when there exists only one equivalence clgds, wholly
absolute (especially theory describing flat Gallillean space—time is an example of
this exceptional caseg,denotes full geometrical description of that space—time).

Definition. The subgroup of the covariance gro@® which is the symmetry
(invariance) group of all absolute objegta is said to be symmetry group of that
theory.

The explicit definition ofinvarianceis given in section 5.

In the case of the quantum theory of a free particle in Galilean space—time
all geometrical quantities describing space—time are absolute objects, of course,
and the inhomogeneous Galilean group is the symmetry group of that theory. In
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section 5 the explicit meaning of tlvariancecondition will be presented in this
theory.

The motivation to the use of the notion of theometric objecis that in our
case and in general case the quantities we are dealing with do not in general form
any representation d but they are always geometric objects. As an example,
let us consider the wave function. It is well known that it does not form any
representation o& but only a ray representation.

The paper is organized as follows. In section 2 geometrical structure of
Galilean space—time is described followingudeourt (1990). In section 3 gener-
ally covariant Hamilton—Jacobi equation is obtained with the help of Courant and
Hilbert’s theorem. In sectiv4 a generalization of Sabdinger Ansatz is given,
by which Schodinger (1926) passed from Hamilton—Jacobi equation originally to
the Schodinger equation. In section 5 Galileaavarianceof the equation will be
proved. In section 6 it is shown that the equation correctly reconstructs results of
Biatynicki-Birula et al. (1994), Bia/nicki-Birula and Bial/nicki-Birula (1997),
Bordé et al. (1991), Kaliiski et al. (1996), Ldmmerzahl (1996), and Mashoon
(1988). In the appendix, connection with the work of Duval anthiklé (1984)
and Kucha(1980) is presented.

2. NEWTON-CARTAN SPACE-TIME

Contrary to general relativity space—time the Newton—Cartan space—time (es-
pecially the Galilean space-time) is described by three independent geometrical
objects: the connectidry,, the gradient of absolute tintg, and contravariant ten-
sor fieldg”*V, with the rank equal to 33#Vt, = 0. See Trautman (1963) for a more
detailed discussion. They are covariantly constslpg*” = 0 andV,t, = 0. But
because the rank gf*'(3r'};)) is not determined bg,,, andt,,. With the help o',
however, covariant tensgy,, and contravariant vectar can be defined such that

gVoug’ = gt 1)

All the rest of that paragraph will concern the precise definition of covagant
(and an additional object—contravariant veaipsee (2) and (3)). Equation (1) is

not a definition, of course. The covarianand contravariani completely replace

the connection and are much more convenient herein than in the other connection.
I'{, is determined by motions of free-falling particles, i.e. geodesics. Geodesic is
a solution of the Lagrange—Euler equations for a free-particle Lagrange function
L. The actionS of the particle in a Cartesian coordinate systen¥X( Y, Z) has

the well-known form

S_/m{dxz+dY2+dZZ

2 dt2

with the Newtonian potentiap. If one introduces a new parametemlong the

—Z(p} dt



1600 Wawrzycki

space-time curve of a particle instead of absolute tintke action will take on
the form

dt
2 dr

2 2 2 2
[ G G 2008,

Then we write the last expression in arbitrary coordinateés ¢ =0, 1, 2, 3)
(keeping the same parameter along the space—time curve) defined as functions of
the Cartesian coordinatets K, Y, Z):

ma,y X*Xx¥

~ D Ty

2 t;Xx°

where dot denotes differentiation with respect to the parametardt, = ddxt
(hereafter differentiation will be denoted By). Lagrange functiorL. becomes

homogeneous of degree 1 in the veloci§ésand can be written as
_ may,y Mg
T2 té0

with some covariant fieldy,,,. The parameteg,, can be interpreted as equal to
a,y, thatis

| _ MO EEY
T2 t.éc
and because is determined up to full-parameter derivative

L — L—l—mﬂ,
dr

g,v is determined up to the gauge transformation
Ow —> Qu +t, o f +18,0,1

It is easy to check thay,,, defined in this way fulfils (1). As a second step is
defined in the following way

g9’ = 8 —u’t,
(2
utt, = 1.
It is defined, of course, up to the gauge transformation
ut — ut — g*vo,f.

Lagrange—Euler equations give the geodesic equation with the connection

1
F\’,‘p = u”ot, + Eg’“’{avgpg + 0,0vs — 05 0vp} 3)
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as a gague-independent quantity. The last formula was proved independently by
Datitcourt (1990). Conversely, (3) and (2) up to the gauge determine covgriant
and contravariant, so they may be introduced instead of the connection, as will
be done here. It should be stressed here that the covareamd contravariant
completely replaces the affine connection.

3. GENERALLY COVARIANT HAMILTON—-JACOBI EQUATION

If the Lagrange functiorL is homogeneous of degree 1 in velocities the
Hamilton—Jacobi equation can also be built up. In this particular case we have
det@:vd:v L) =0 andH = —L +£#3: L = 0 and the canonical form cannot
be reached by the Legendre transformation. In this case, however, the following
equations remain valid (see e.g., Courant and Hilbert, 1961).

85;1 S= 85;1 L
with the principal Hamilton—Jacobi functid Homogeneity relatio* dz.L = L
with 9, S substituted instead @g. L is the Hamilton—Jacobi equation
1 m
ut 0:u S+ %g‘“’ 0en S0gv S — Egﬂvu“u" =0.

This is a particular case of the theorem of Courant and Hilbert for homoge-
neous Lagrange functidn. The Hamilton—Jacobi equation uniquely follows from
this theorem. With the help of this equation transformation properti€scah be
investigated. From this equation, it follows that under the coordinate transforma-
tion Stransforms as a scalar field and under the gauge transformatias the
following transformation rule

S— S+mf. (4)

The phase of the plane wave function describing a free particle is exactly equal to
S. Therefore from (4) transformation rule of the wave functibtiollows. Under
the gauge transformatioh namely, the transformation is

im f
¥ >eh @
and under a coordinate transformation
W(EM) — W/(EM) = W(E(EM)).

4. SCHRODINGER’S ANSATZ AND THE EXPLICIT FORM
OF THE PLANE WAVE IN ANY COORDINATE SYSTEM

The covariant Scludinger equation may be found with the help of slight-
ly modified Schodinger Ansatz (see Satdtinger, 1926) using the covariant
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Hamilton—Jacobi equation. This derivation cannot be regarded as a proof. The
proof consists of the investigations of tiiearianceproperties of the wave equa-
tion presented in section 5. At the beginning a small modification of the Ansatz that
led to Schodinger’s equatiomwithout timewill be presented. The modified Ansatz
leads to Schodinger’s equatiomith time (the original Schodinger’s derivation

of wave equatiowith timeis different, the presented Ansatz is based on Ansatz
of the equatiorwithout timg. The starting point of Sclbdinger’s considerations
was de Broglie’s hypothesis. He used the analogy

de Broglie’s wave electromagnetic wave
classical limit| | geometrical optics limit
classical particle light ray

Eikonalis the counterpart of the classical act®fermat’s principle is the counter-
part of principle of least action. From this he derived the form of a wave fungtion

i
v = aeﬁs,

wherea is a constant, which is cancelled by differentiation in the next steps. So,
this may be formally written as

h
S= T Inw.
Schiddinger substituted thiS to the Hamilton—Jacobi equation

1- -
S+ —VS.VS=0,
2m

where the positive real numb&fS- VS and real numbes; S was written as

2Ve vy h oW W H .
h*5- - = andz (%~ — "5+ ), respectively:

h2_ . ih
—— VWU . VU* 4 — (" ¥ — W gP*) =0. 5
- TR - W) ©)

However Schodinger did not solve it. He probably thinks on the membrane
vibration theory and assumes that the wave funcffominimizes a functional

/fRsz(qJ)dt&x

guadratic in¥ and its derivatives. He assumes that the Lagrange funétibhis
equal to the left-hand side of (5). So, the Smdinger equation follows from

3(/: /Rzz(\y)dtd3x> =0
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wheresW(t;) = §W(t,) = 0. To have the functionajttf Jre £(¥) dt d®x well de-
fined, he assumes thdt tends to zero appropriately fast whemoes to infinity,
so that

/ W d3x = 1.
R3

Now the generally covariant Saatinger equation will be derived. The analogous
substitutions are

h
S= i—In v,
5= e (Yud_ Vul”
" 2i V7 e

and

v, ¥ v,u*
Y  R2NMV VM \
9"V 9,S9,S= h-g" T
Exactly as before these formulas are substituted to the generally covariant
Hamilton—Jacobi equation. The result of the substitution is as follows
Ih " * * h2 yAY% * m Wy v *
Su (¥*V, ¥ — WV, ¥%) — om9 V, WUV, ¥ 4 2 Guvuu Wy =0.

The left-hand side of the last formula will be denoted hyV¥). Following
Schiodinger the Lagrange functiofiof generally covariant Schdinger equa-
tion will be defined as equal ta(¥) - v, wherev is thenatural invariant measure
of Galilean space-time, that is, the wave equation follows #6fmv d*x) = 0.
Now it will be shown that this condition is equivalent to

IA IA
— —V,——— =0
W I(V, %)

The simplest way to compute timatural invariant measure is to pass to such a
coordinate system that has as one coordinate the absoluté,tand remaining
three coordinates as any space coordinates entirely lying in a simultaneity hy-
perplane. In such coordinates the volume elemaettix is of the form,/g dt &,
whereg denotes the determinant of Euclidean metric tensor matrix on a simultane-
ity hyperplane. It can be shown the Euclidean tensor is induced by contravariant
tensorg. The principle of least action is equivalent to

o a0 IA A A
~3 = SIS e o Jge
awr ~ gi,en V9w V9% gE s TV G

(6)

0=

IA IA IA IA
—_— a —_— " — — = - V
dev/9 3(9ga W) %9 (3 v) V9 (a\y* " a(vw*)) ’
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where the explicit form of affine connection in the coordinates(has been
used (see Datourt, 1990)3; /g = /G309 30k = /AT, ke /T = /T2y,
Y = 0 andI'g, is equal to ordinary Christoffel symbol of the Euclidean tensor
gag (time coordinate is denoted by 0, space coordinates are denoted by Latin
indices). ¥ and W* have been considered as independent functional variables.
Because the left-hand side of (6) is a scalar vanishing ix)frame, it is equal to
zero in any coordinate system. Conversely, because Lagrange derivative af
density of weight+-1 (which (from (6)) vanishes irt(x) frame) it is equal to zero
in any frame.

As to theinvariant measurén any frame of reference one has

Theorem. In any coordinate system {Xinvariant measure v is

V= \/del[g,ﬂ, + (1 — gypueub)t,ty].

Proof: First, gauge-independent covariant tenlshy, can be defined:
M;LV = guv - g;LAU)\tV - gvku)‘t//, + gaﬁUaUﬁtutv + t;/.tV1

whereU* is any vector, such tha“t, = 1. TensorM,,, possesses the inverse
MV

M* = g™V +U*UY,
that is, determinant o1, is not equal to zero and
M, MY = 87

if U# = u*. Second, determinant dfl,, does not depend on‘Ufulfilling the
conditionU*t, = 1. Indeed, one has

[0ux M,y M“"]Um:1 =0,
and

[8ys detM,)]yr, —1 = [ys My MY detM o )]y, -1 = 0.

The substitutiorJ” 2 yr givesv u \/deta\/l,“(U* = u*) mentioned earlier. As
the last step of the proof it will be shown that= ,/g in the coordinatest(x),
wheret is the absolute time and are the remaining three coordinates lying in
simultaneity hyperplanegy(is defined as earlier). Substituting the explicit form of
0, andu* in (t, x) (see Datcourt, 1990) one has

1 ab
det(M/tv) = det( *+ 0" "Goalon gOb> =0+ ggabgoagob - ggabgoagob =0.
Ooa Gab

O
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Becauseg/det(M,) is a scalar density of weight1 equal tanvariant mea-
surein (t, x), it is equal toinvariant measuren any coordinate system (Eq. (6)
may be derived independently with the help of explicit fornvhf

From (6) one gets the generally covariant $clinger equation:

2 .
ihu*9, W = —h—g“"v W — Tg utu' — TV utw
ST 2 2 M

It is evidently covariant with respect to coordinate transformations. It is covariant
with respect to gauge transformations too and unitarily equivalent to ordinary
Schiodinger equation in an inertial frame of reference. Moreover, the relation of the
generally covariant Hamilton—Jacobi equation to generally covariano8ictyér
equation is completely analogous to the relation of ordinary Hamilton—Jacobi
equation to ordinary Schdinger equation. For example, the plane wave in any
frame of reference with given canonical momentum is a solution of generally
covariant wave equation if and only if the momentum is equal to the gradient of a
solution of generally covariant Hamilton—Jacobi equation.

Now the form of a plane wave solution in any co-ordinate system can be
found. Canonical momentump, = % is a gauge-dependent covector and the
gaugef transforms it in the following way

p. — Py + mayf.

It is necessary to compute canonical momentum in terms of a gauge-independent
quantity to find the plane wave solution, namely the fourvelocity of described
particle. Two momentas describe the same patrticle in two coordinate systems if
they are connected with the same fourvelocity. Such a definition is correct because
fourvelocity is gauge-independent quantity.

It is easy to show that

g py + mut = mv*,

whereV* is the fourvelocity. Then with the help of the covariant Hamilton—Jacobi
equation and the fact th&t“t, = 1 one can compute

m
pi = mg,V* — Eg,“,V“V"tA.

With a free-falling particle in a flat space—time the covariantly constant fourvector
field can be connected in a natural way such, at* = 0 andv*t, = 1. Then
the plane wave solution with the momentynis of the form

i Py sdw b [Pp dy
\iju(p):eﬁfpoi :eﬁfpo ’ .

The exponentis understood as a curvilinear integral. First, it should be stressed that
it is well defined because under the gauge transformation momentum transforms
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by sp,., the gradient off, and§ sp, dx* = 0. Second, the plane wave defined in
this way fulfils the following five conditions

1. Itis a solution of the Scldinger equation.
2. Under the coordinate transformation it behaves like a scalar.
3. Under the gauge transformatidnt transforms like

im ¢
Wy, — eh .

4. A gauge can be chosen such that the quantifigsandu areinvariant
with respect to Galilean transformations (the gauge will be calj@imet-
ric).?2 The plane wave solution has ordinary plane wave form in an inertial
reference frame when the gaugeysnmetric

5. If one performs the transformatiott — x*" and gaugef the plane wave
with momentump,, goes into the plane wave with the momentum

, axXH

P = gxiw

It should be stressed that there does not exist any plane wave solution when the
gravity field is present and the Riemann curvature is not zero.

(Pu +ma, f).

5. THE EXPLICIT FORM OF THE GAUGE IN WHICH THE WAVE
EQUATION IS INVARIANT

Combining in an appropriate way the gauge transformation and coordinate
transformation one may bring in the situation whgr and u* are invariant
with respect to Galilean transformations. However, the condition of invariance
is not equivalent to putting the ordinary Lie derivative to zero. This is because
the quantities are not simply tensors when their transformation is combined with
appropriate gaugé (calledsymmetrig®

w \Y

- %%(gﬂv+tﬂa\,f+tvaﬂf) o

W

Guv

ut —

=g a).

At the beginning the notion of thi@avarianceof any object (whatever trans-
formation rule it has) will be given according to Schouten (1951). Let the points
of a regionR of space—time be subject to the point transformation

N = <. ®)

2See the next paragraph for more detailed discussion oéfiitagiance and symmetric gauge
3 Strictly speakingy,,w composes a geometric object after the above defined choice of the phase
u* does not. Howeven* together withg,,, composes a geometric object.
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The functionsf* are supposed to be analytickwith a nonvanishing functional
determinant

ofx
oo

&+
and to be chosen in such a way that they determine a one-to-one correspondence
between the points dR and the points of another regid®i. Now we introduce
another coordinate system) such that each point iR has the same coordinates
with respect to £) as its image iR’ has with respect toc(). The &< must be
equal to the coordinates with respect &9 Of the corresponding point oR.

Hence, if

£ = (")
is the inversion of (8), th&*" must be equal to the*(¢* and accordingly the
transformation of£) into () and vice versa is given by the equations

£ =8 (), £ = fREY).

This process will be called thdragging along of the coordinate systér) by the
point transformatior(8).

Now let some fieldS (eventual indices are omitted), be givenRnLet S be
a second field irR’, whose components with respect k0)(in any point of R’ are
equal to the components of the first fieddn the corresponding point d®. This
process will be called th@ragging along of the field S by the point transformation
(8) and S will be called thefield dragged alonglf R andR’ have some region in
common, the field$ and S can be compared. If the® = §, the fieldSis called
invariant for the point transformatio(B).

Substituting an infinitesimal transformation (8) and a tensor fiel&torthis
definition one gets that ordinary Lie derivative is equal to zero. But substituting
g,v andu® with their transformation laws one gets

au((ggp)gpv + av(aép)gw) + 55'0 8pguv = tu Oy f (85) +1ty au f (85)
9)
oy (SEMUY — 8gY o Ut = gV o, f (8¢),

respectively, wherd is thesymmetric phase of the Galilei transformatipasd
the infinitesimal Galilei coordinate transformation was substituted

sli — sl‘ + (Sé:ll

Symmetric phasaf the Galilean transformatioG@lilean symmetry phagm
any coordinate system can be computed with the help of the plane wave solutions.
Let (1) be any coordinate system and let a geodesic of a free particle moving with a
fourvelocityV* be given ¥/ * is the tangential vector of the geodesic). Now let the
space—time points be subject to the Galilean point transformation (not understood
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as a coordinate transformation but as a point transformation). The transformation
moves the lines ofy) coordinate system intg«) lines, and the first geodesic into

a second one with the tangential vect6t = V#* + v#, wherev” is defined as a
fourvelocity of the Galilean transformatio®f course

v, =0 (20)
because
1=VH, =V,

Again in a very natural way the covariantly constant fourvector field may be
connected with the Galilean transformation (in a flat space—time) fulfilling (10)
i.e. entirely lying in a symultaneity hyperplane. Wave functions of the first and the
second particle are plane waves (built with the help of their fourvelocity fields,
respectively; see preceding paragraph). Let the wave phase of the first particle
in (u) be S and the wave phase of the second onef) pe S. The Galilean
transformation is a symmetry if and only if

S(x*, V) = S(x*, V™),
this is equivalent to
S(x*, V* —o*) = S(x*, V¥).
With the help of this symmetry condition the quantity
v S(x*, V¥)dx"

may be computed, which gives the following theorem:
Theorem. Gradient of the symmetric Galilean phase is equal:

1
8Mf = —gHV’UV =+ ngvvkvvtu,

wherev* is the velocity field of the Galilean transformatioft x> x* — v* dt.

From (2) and (9) with Galilean transformations substitutegmmetric
Galilean phasenstead of f g,, andu* can be computed. Moreover (2) and
(9) are in agreement with (3), which is a very nontrivial fact. It can be shown that
in thesymmetric gaugéhe quantity

m
= ——gu‘u’
n 5 Ouv

is a constant scalar callédaternal energy(connected with the unitary representa-
tions of the Galilei group; see the following discussion). Solving (2) and (9) in an
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inertial frame one gets

_2n 0 1
m 0
(g;l.V) = 1 ] (UM) = O ]
1
0 1 0

and the wave equation is

h2 -5
ihoy W = —— VU v,
t >m +n

n is any constant, which cannot be computed with the use of symmetry, because
this equation is invariant with any constant value ot he simplest way to explain
it is to stress that in the phase space not only one paraboloidywitl® but the
whole family is invariant with respect to Galilei group
52

E om = n.
However, all unitary representations of the Galilei group with different values of
n are equivalent (seedvy-Leblond, 1963).

Solving (2) and (9) in arotating frame (choosiing= 0) one gets the equation
commonly applied when the rotating frame is used (see e.g:yméi-Birula
et al, 1994; Biaynicki-Birula and Biaynicki-Birula, 1997; Bord'et al, 1991;
Kalihskiet al,, 1996; Lammerzahl, 1996; Mashoon, 1988).

So, thesymmetric gaugis found, but in a rather involved form. It is necessary
to give the explicit form of thesymmetric phasefér any transformation (not only
Galilean) in any coordinate system. Again the problem will be solved using the
plane wave solutions.

Let a free-falling particle geodesic be given, with a tangential fourvelocity
V*# and its rest inertial reference frame (in the frame the particle is at rest). In
addition let any reference framg) be given (not necessarily inertial, curvilinear
in general case). Suppose that andu” areinvariant, and all used transformation
phasef are supposed to lsymmetricThen in the rest frame the plane wave phase
of the considered particl® in (i) is zero, such that

9,8 =0.
On the other hand gradient of the wave phase of the same partigl¢ i (
m
9, S=mg, V"’ — EgaﬁV“‘V’f‘tM.

Consider the transformationu] — (u'). It transforms the phase of the wave
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functionS — S = S+ mf. After differentiation one gets
m
ma, f =-9,S=-mg,V'+ Egc,ﬂvavf‘tu.
With the help of thisf one may compute

Uy =Gu + o f +60,f =0u — 690V — G VY + G VIV L.

Consider novg;,, near a space-time poipt V¥ will be chosen such that" (p) =
u”*(p). Nearp one has

VE =u* 4+ (V# —ut) = u + sut,
wheredu#(p) = 0 and neamp
0. = Ouwn — HiGuv 8U" —t, 0,y 8UY + higher powers ofu,

wheren is chosen to be equal to zero. So

9. (P) = 9w (P);

in the case when is not equal to zero the last formula is also true (in the case
whenn # 0,9, S = —nt, and
1 o n
8Mf = —gﬂVV" + éga,gv (Vﬁtﬂ — atu) .
This means that there exists an inertial frame moving with a fourvel&€ity=
u“(p) such thatg,, in it is equal tog,, in (1) at the pointp. So, if u* was
covariantly constang,,, would be such as in an inertial reference frame (moving

with the fourvelocityV# = u*). But from space—time translation invariance it
follows thatV,u¥ = 0, and one has the following theorem:

Theorem. Symmetric phase f of any transformat{an, u*) — (x*, u*)inany
coordinate system always has the Galilean form

1
3, f=—-guv'+ Egkvvlvvtu,

wherev* = u#* — U™,

Symmetric phaserhay be deduced independently from translatiorarianceof
contravarianti and covariang.

It is not obvious that Equations (9) are generally covariant with respect to
(7); it can be shown that it is really the case whiers equal tosymmetric phase
That is, ifu andg are invariant in some reference frame, they willibeariant
in any reference frame. Because our equation (uniquely determirieddrnjance
conditions) ignvariantin Galilean frame, it is invariant in any coordinate system.
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6. INVARIANT FORM OF SCHR ODINGER’S EQUATION
IN A ROTATING FRAME

Frame of referencex( t) rotating with a constant angular velocityaround
the ' axis of an inertial reference fram&’(t) will be considered heré/elocity
field of a Galilean transformation in the rotating frame is of the form

0
V1 coswt — V2 sinwt
V2 coswt + V1 sinwt |’
V3

(v") =

whereV? have been chosenin such away that the Galilei transformation in rotating
frame

t
X + V1t coswt — V2t sinwt
y + V1t sinwt 4+ V2t coswt
z+ V3t

N < X

is equal to ordinary inertial form of Galilean transformation with the velovify
whenw = 0 and becomes equal to identity whéf = 0.
From the equation

u“t, =1
it follows that
1
wy= %],
u3
and from covariant constancy
1

¥1 coswt — 92 sinwt — wy

My — a_
W =1 52 coswt + 91 sinwt + wx |’ V" = const.
193
From Eq. (9) with space rotatiorf (= 0)
850 = st 0
sgt=10ox| _ X + ey + coswtelz — £3z sinwt
se2=08y | y + £2X + coswtesz + sinwtelz

8€3 =5z Z+ e3x coswt + sinwtely — sinwte3x + coswtedy
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(wheregibe,’(J = gjk = —é&j are three infinitesimal rotation parameters) one gets

1

wy _ | @Y
=1

0
From Eg. (2) and; = 0 one gets

0’(X>+Yy?) oy —wX O

B wy 1 0 0
@I=1 _ox o 1 o
0 0 0 1

The above quantities fulfil all remaining Eq. (9) for all space-time symmetries
with thesymmetric phasg$) for Galilean transformation

wy(V?! coswt — V2 sinwt) — wx(V? coswt + V1 sinwt)
@, 1) = V! coswt — V2 sinwt
wis= V? coswt + V1! sinwt
V3

The explicit form of the Scladinger equation in rotating frame is

h? _
ihg W = —%vzxy + ihaw(ydyx — xdy)¥,

in accordance with Bighicki-Birula et al. (1994), Bialnicki-Birula and
Biatynicki-Birula (1997), Bor@'et al. (1991), Kaliiskiet al. (1996), LAmmerzahl
(1996), and Mashoon (1988).

APPENDIX (CONNECTION WITH THE WORK OF DUVAL
AND KUNZLE AND KUCHA R)

Identical quantities used by Duval and#Zle and in this paper are as follows:

Duval and Kinzle This paper
" Y, ) « - (@t f)
ut — VA, “«~ — u#
)Lj,uv + A;A”v + Aku D I — - Ouv

1 1
A, ut — E;/MVA#A\, < mmmmmmmm e - Egu\,u“u"
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Gauge transformations of Duval anduiZle induce the gauge of D&ourt's
quantities and vice versa.
If the connection is Newtonian, then (wheRedenotes the curvature tensor)

v R, = Rif = ROy,
which is equivalent to the last condition (8) in the paper of Duval and€
u
0o Ag) + y[aVﬁ]uA =0.

This is consistent with the gauge (11) and (12) (in the paper of Duval andI&;
1984)

U - 0 =u*+g"w,, x—>x=x+f,
. 1
Ay —> Ay = A+ +w, — (U*WA+59’”WMWV)

if and only if
W, = 0, W.

The explicit form of transformation &Mv—uniquely determined by (11) in Duval
and Kiinzle (1984)—is

u u
Vv = Yy — Y W — ¥y 3, W + {207 9,W + 7 9,W 3, W}, v,

and gauge transformation @&§, uniquely determined by (11) and (8) is
A 1 A
A, — A, +9,f+9,w—1u axw+§y P oW W i,

whereu in the transformation formulas is that of Duval andrgle. Condition
imposed omA,, can be defined in terms of D&court’s quantitieg),,, andu* used
in this paper. That is, condition (8) of Duval andikZle (1984) has the form

Uil VaU* — UMt Ve AL — At Ve u* — g% Aste Ve A, = 0,

andis identically fulfilledas a consequence of the algebraic identity

1 1
A ut — Ey‘“’AMA\, = égﬂvu‘ u,
whereu on the left hand side is that of Duval andikzle but on the right is that
of Dalitcourt!

This equation is covariant with respect to the gauge transformations. Gauge
transformation ofA,, in terms of Daitcourt quantities is

1
AL — AL+ 0, (f +w)— {uA AW + g™ A dw + ngv RW avw}tu.
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In the case the gaugkis symmetric (wave equation is invariant with respect to

Galilei group) the covarianty” is invariant and

A,=0 and w=—f.

It should be stressed that in the general case, when the space—time is curved gauges
f andw are independent, and covariapt™is not invariant, so covariam cannot
be determined in terms of D&court quantitiesl andg in this way.

Quantitiesg,y and u*, which were used by Kuch&1980), are equal to
Datitcourt quantities used in this paper.

Kuchafound the explicit form of the wave equation (again up to some gauge
transformations) in such coordinate systems, which have as one coordinate the
absolute timé and the remaining coordinates lying in a simultaneity hyperplane
(see Chap. VI and Eq. (6.8) of Kuahd980). His Eq. (6.8) is in agreement with
Biatynicki-Birula et al. (1994), Biaynicki-Birula and Biaynicki-Birula (1997),

Bordé et al. (1991), Kalriski et al. (1996), Lammerzahl (1996), and Mashoon
(1988) as well as Duval andufizle (1984), but with the help of such special
observer considerations (applied by Kughais difficult to obtaingenerallyco-
variant equation.
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